l 学术论文 [1] Fan J, Hu Z. High breakdown electric field and ultralow loss in Sb+Ho co-doped TiO2 giant dielectric ceramics induced by strongly coupled defect clusters. Journal of Materiomics. 2024. [2] Fan J, He G, Cao Z, Cao Y, Long Z, Hu Z. Ultrahigh energy-storage density of lead-free 0.85Bi0.5Na0.5TiO3-0.15Ca(Nb0.5Al0.5)O3 ceramic under low electric fields,Inorganic Chemistry Frontiers, 2023, 10(5): 1561-1573. [3] Fan J, Wang J, He G, Long Z, Hu Z. Ultrahigh energy storage performance of a 0.75Bi0.47 Na0.47Ba0.06TiO3-0.25CaTi0.8Sn0.2O3 ceramic under moderate electric fields. Inorganic Chemistry Frontiers. 2023;10(18):5475-87. [4] Fan J, He G, Cao Z, Cao Y, Long Z, Hu Z. Thermal stable and ultralow dielectric loss in (Gd0.5Ta0.5)xTi1-xO2 giant permittivity ceramics by defect engineering. Journal of Materiomics. 2023 ,1;9(1):157-65. [5] Fan J, Yang T, Guan Y, Liang J. Sb+Lu co-doped TiO2 ceramics with ultralow loss, high permittivity, and excellent DC bias voltage stability. Ceramics International. 2023,15;49(18):30557-64. [6] Fan J, Chen Y, Long Z, He G, Hu Z. Grain-boundary engineering inducing thermal stability, low dielectric loss and high energy storage in Ta+ Ho co-doped TiO2 ceramics. Ceramics International. 2022, 1;48(15):21543-51. [7] Fan J, Leng S, Cao Z, He W, Gao Y, Liu J, Li G. Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics. Ceramics International. 2019, 1;45(1):1001-10. [8] Fan J, Chen Y, Long Z, Tong L, He G, Hu Z. Giant dielectric response and relaxation behavior in (Tm+Ta) co-doped TiO2 ceramics. Physical Chemistry Chemical Physics. 2022;24(8):4759-68.(2022 HOT Article) [9] Yang T, Du Y, Fan J*, Zhang L, Liang F*. Waterproof and Flame-Retardant Fabric Coating with Nail-Tie Structure was Constructed by Janus Particles with Strong Mechanical, Physical, and Chemical Durability. ACS Applied Materials & Interfaces. 2023, 9;15(46):54166-75. [10] Fan J, Long Z, Zhou H, He G, Hu Z. Colossal permittivity of (Tm+Nb) co-doped rutile-TiO2 ceramics with ultralow dielectric loss and excellent thermal stability. Journal of Alloys and Compounds. 2022, 15;921:166200. [11] Fan J, He G, Long Z, Hu Z. High insulation resistivity and low dielectric loss in (Ta, Al)‐codoped BaTiO3 colossal permittivity materials. Journal of the American Ceramic Society. 2024 ,107(7):4854-63. [12] Fan J, Yang T, Cao Y, Liang J. Ultralow dielectric loss in Tb+ Ta‐modified TiO2 giant dielectric ceramics via designing defect chemistry. Journal of the American Ceramic Society. 2023,106(3):1859-69. [13] Yu S J, Fan J*, Hu Z*, Wu Y. Li3Na7B4P6O26: A New Ultraviolet Transparent Congruently-Melting Non-linear Optical Crystal. Dalton Transactions. 2024. DOI:10.1039/D4DT01428F [14] Fan J, Yang T, Cao Z. Colossal permittivity and multiple effects in (Zn + Ta) codoped TiO2 ceramics. Journal of Asian Ceramic Societies, 2020, 8(4): 1188-1196. [15] Fan J, Long Z, Hu Z. High dielectric performance and multifarious polarizations in (Lu + Ta) co-doped TiO2 ceramics. Journal of Asian Ceramic Societies, 2021: 1-10. [16] Fan J, Hu Z. Interface effects and defect clusters inducing thermal stability and giant dielectric response in (Ta+Y)-co-doped TiO2 ceramics. Journal of Materials Science: Materials in Electronics, 2021: 1-9. [17] Fan J, Long Z, Zhou H, He G, Hu Z. Colossal dielectric behavior of (Ho, Ta) co‐doped rutile TiO2 ceramics. Journal of Materials Science: Materials in Electronics, 2021: 1-11. ● 专利 [1] 胡章贵,樊江涛,一种二氧化钛基巨介电陶瓷材料及其制备方法。申请号:202111124871.0 [2] 胡章贵,樊江涛,一种高击穿场强的复相巨介电陶瓷材料及其制备方法。申请号: 202110805670.0 |